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ABSTRACT

Accurate measurements of thermophysical properties at high temperatures (above

1000 K) have been obtained with millisecond pulse-heating techniques using tubular

specimens with a blackbody hole.  In the recent trend toward applications, simpler

specimens in the form of rods or strips have been used, with the simultaneous

measurement of the normal spectral emissivity using either laser polarimetry or

integrating sphere reflectometry.  In these experiments the estimation of the heat capacity

and of the hemispherical total emissivity is based on various computational methods that

were derived assuming that temperature was uniform in the central part of the specimen

(long thin rod approximation).  The validity of this approach when using specimens with

large crosssections (rods, strips) and when measuring temperature on the specimen

surface must be verified.

The application of the long thin rod approximation to pulse-heating experiments

is reconsidered and an analytical solution of the heat equation that takes into account the

temperature dependence of thermophysical properties is presented.  A numerical model

that takes into account the temperature variations across the specimen has been

developed.  This model can be used in simulated experiments to assess the magnitude of

specific phenomena due to the temperature gradient inside the specimen, in relation to

the specimen geometry and to the specific thermophysical properties of different

materials.
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1. INTRODUCTION

In the last thirty years pulse-heating techniques have become accepted methods

for the accurate measurement of several thermophysical properties of electrical

conductors in the high temperature range [1, 2].  The most accurate results have been

obtained in the characterization of reference materials, using tubular specimens with a

blackbody hole [3]:  in these cases the temperature is measured with a high-speed

pyrometer focussed inside a blackbody machined in the tubular specimen.  The

blackbody configuration provides true temperature measurement conditions, with the

radiation emitted by the blackbody being related to the integral of the longitudinal

temperature distribution of the inner part of the tubular specimen.  The emissivity of the

realized blackbody is generally high (> 0.97), and is known with some uncertainty due to

the limited knowledge of the wall emissivity, surface conditions and geometrical

limitations.

The trend of pulse-heating techniques in recent years has been toward application

oriented activities.  Specimens with blackbody holes are difficult to machine and often

materials are not available in tubular form.  Two different methods have been developed

for a direct measurement of the normal spectral emissivity of the specimen surface in

pulse-heating conditions.  The National Institute of Standards and Technology (NIST,

Gaithersburg, USA) and Containerless Research Inc. (CRI, Chicago, USA) have jointly

applied laser polarimetry [4].  This technique uses rod specimens and measures directly

the normal spectral emissivity of the specimen surface by analyzing the polarization state

of the radiation reflected by the specimen surface during the pulse experiment.  The

technique has been developed for measurements in the solid phase and has been extended

to measurements in the liquid state using wire specimens [5, 6].  Alternatively, the
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Istituto di Metrologia “Gustavo Colonnetti” (IMGC, Torino, Italy) has developed an

integrating sphere reflectometric technique to measure the normal spectral emissivity of a

strip specimen during pulse-heating with measurements performed inn the solid phase

including the melting plateau [7, 8].

Measurements of the heat capacity and of the electrical resistivity of molybdenum

in the temperature range 2000-2800 K performed at the NIST [9] have indicated the

validity of the laser polarimetry technique, providing results of similar accuracy as those

obtained using tubular specimens with a blackbody configuration.  Similarly experimental

results of the heat capacity and of the electrical resistivity of niobium in the temperature

range 1400-2700 K performed at the IMGC [10] on strip specimens with integrating

sphere reflectometry provided results of comparable accuracy with respect to

measurements performed earlier using a blackbody configuration.

For both techniques (laser polarimetry and integrating sphere reflectometry) the

main difference with respect to measurements in a blackbody configuration is that the

temperature of a small portion of the specimen surface is assumed to be representative of

the entire specimen.  For very accurate experimental work, we consider in this paper the

limitations of this assumption, by developing a mathematical model that describes a long

thick specimen, with a temperature gradient along its crossection.  The mathematical

formulation used in the computation of thermophysical properties from experimental

quantities in pulse-heating experiments has generally accepted a mathematical

simplification known as the “long thin rod” approximation.  This simplification implies

that the specimen is sufficiently thin to have no significant temperature gradient along its

crossection.  In examining this approximation, an analytical solution is presented, that

takes into account the temperature dependence of thermophysical properties.
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Fig. 1 Schematic representation of the cylindrical specimen used for pulse-heating
experiments with laser polarimetry

Fig. 2 Schematic representation of the strip specimen used in integrating sphere
reflectometry under pulse-heating conditions
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2. FORMULATION OF THE PROBLEM

Two specimen geometries are considered:  a rod (Fig. 1) and a strip (Fig. 2),

representative respectively of laser polarimetry and of integrating sphere reflectometry

experiments.  The specimens are considered to be geometrically perfect (no variations of

crossection) and with a normal spectral emissivity identical in any surface point.  With

these assumptions, the simultaneous measurement at the same wavelength of the normal

spectral emissivity and of the radiance temperature of the surface can provide

information on the true temperature of the specimen.

Heat diffusion in electrical conductors is described by the partial differential

equation:

δ
∂
∂

λ µ ρC
T

t
T Tp = ∇ ⋅ ∇ + ⋅ ∇ +i i 2 (1)

where each term of Eq. (1) describes a phenomenon taking place in the specimen on the

passage of an electrical current.  The symbols denote the following properties: δ, density;

Cp, heat capacity at constant pressure; T, temperature; ∇T, temperature gradient; λ,

thermal conductivity; µ, Thomson coefficient; i, electrical current density; and ρ,

electrical resistivity.  The derivation of the heat equation for metals and semiconductors

on the basis of non-equilibrium thermodynamics can be found in the literature [11].  In

pulse-heating experiments with a sufficiently fast heating rate, temperature profiles with a

flat central part [dT(x,y,z,t)/dz = 0] are obtained.  For this central portion of the specimen

one can write a simplified version of Eq. (1) that takes into account the radial

temperature distribution in a cylindrical coordinate system where the z-axis is the center

of the rod-shaped specimen (Fig. 1)
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or for a slab (or a wide strip) where the x-axis is perpendicular to the surface (Fig. 2)
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The Thomson heat term µi⋅∇T in these cases is zero because the direction of the current

density i and of the temperature gradient ∇T are perpendicular to each other.

The Eqs. (2) are a mathematical model for a long and thick specimen because they take

into consideration the temperature gradient in the crossection of the specimen, that is a

physical consequence of the radiation losses from the specimen surface.  The possibility

of practical use of Eqs. (2) for numerical simulations of the experiments is limited,

because the current distribution in the specimen is unknown.  On the other hand the

spatial distribution of the input power can be computed from the voltage drop measured

in the central part of the specimen.  Using the simple Ohm law we have to be conscious

that we are neglecting

• the skin effect when the current is switched on,

• other phenomena which may also contribute to the electric field.

The influence of a non-uniform electric field in pulse-heating experiments was studied by

Lohöfer [12], who pointed out that the transient skin effect has a limited influence

because of its short duration.  Depending on the geometrical configuration of the

experimental setup, the skin effect vanishes a few milliseconds after the current is

switched on.  In a subsecond experiment, during this transient of millisecond duration,

the specimen is still at very low temperatures where no pyrometric measurements are
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generally performed.  Consequently the skin effect taking place at the beginning of the

experiment can be neglected.

The relation between the electric field and the current density for quasi-stationary

processes (like the subsecond experiments, where the specimen is heated by a DC

current pulse lasting several hundred milliseconds) is governed by the equation

E i= ∇ − ∇ +
1

e
S Tξ ρ (3)

where  ξ, is the chemical potential;  e, the electrical charge of one electron; and S, the

Seebeck coefficient.  In pulse-heating experiments large currents (thousands of Amperes)

are applied and therefore the last term in Eq. (3) is dominant while the remaining terms

can be neglected.  In a scalar representation

E r t i r t( , ) ( , )≅ ρ
(4)

By putting Eq. (4) into Eqs. (2) we obtain relations that are suitable for the computation

of the temperature profiles inside the specimen.  For a rod-shaped specimen
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(5)

and a similar expression holds for a slab (or a wide strip).  During the free cooling period

the power is switched off and the last term in Eq. (5) is equal to zero.

This partial differential equation must be solved with the appropriate initial and

boundary conditions.  At the beginning of the experiment we assume that the specimen is

in temperature equilibrium with its surroundings at ambient temperature Ta.  The initial

condition for the heating period is therefore Tinitial(r,t) = Ta.  The initial condition for the

cooling period is obtained from the last temperature distribution during the heating

period.  In this mathematical model the boundary conditions are quite simple because



9

heat is propagating only in one direction (r for rod and x for slab) towards the specimen

surface.  At the surface the heat balance is defined by the Fourier and Stefan-Boltzmann

laws:

( )− = −λ
∂

∂
ε σ

T

x
T Tsurface

ht surface a
4 4 (6)

where εht is the hemispherical total emissivity and σ is the Stefann Boltzmann constant.

An additional boundary condition can be written on account of the symmetry of the

model.  This does not improve the result but it saves some computation time.  At the

center of the specimen (in the rod case  r = 0 and in the slab case  x = 0) the temperature

profiles maintain their symmetry ∂T/∂r|r=0 = 0  and  ∂T/∂x|x=0 = 0, respectively.  It can be

easily demonstrated that the classical relations used for the computation of heat capacity

and hemispherical total emissivity in subsecond pulse-heating experiments [1] are derived

from a simplified version of the more general case presented before.  We can consider a

simplified model (generally known as a long thin rod approximation) in which the entire

volume of the central part of the specimen is uniformly heated and cooled.  This

simplification means that the crossectional thermal conduction is neglected and the

radiation heat losses at the surface are included into the heat equation in order to

maintain the power balance of the central part of the rapidly heated specimen.  By

integrating the Eqs. (2) over the volume and adding the radiation loss term we get

( )mC
dT

dt
P A T Tp

h
ht a





 = − −ε σ 4 4 (7)

where m and A are the mass and the radiating surface area of the central portion of the

specimen while P is the input power.  During cooling the current is switched off  (P = 0)
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Eqs. (7) and (8) are the power balance relations usually considered for the computation

of thermophysical properties in pulse-heating experiments using a long thin rod

approximation [1].

3. SIMULATION OF PULSE-HEATING EXPERIMENTS

Subsecond pulse-heating experiments are performed in a wide temperature range

(up to several thousand Kelvins).  The thermophysical properties of the specimen change

considerably with temperature in such a wide range and this variation must be considered

in any numerical simulation.  The temperature dependence is generally represented by

means of polynomial functions, e.g.

C T c Tp i
n

i( ) = ∑ ,   ε ht i
m

iT e T( ) = ∑ ,   ρ( )T rTi
p

i= ∑ (9)

3.1 Long thin rod approximation

If we apply the temperature dependence of properties Cp and εht to Eq. (7) and use as

input power the experimentally measured quantities voltage drop U and current I passing

through the specimen, we obtain

( )UI T A T T mC T
dT

dtht a p− − =ε σ( ) ( )4 4

(10)

If the input power is expressed as

• P = P(t) function of time t, then the simulation according to Eq. (10) can be

performed via a Runge-Kutta algorithm,
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• P = P(T) function of temperature T, then even an analytical solution of Eq. (10) is

possible.

Let us assume that, besides thermophysical properties, also the input power P=P(T) can

be represented as a polynomial in temperature.  In this case we obtain a first order

ordinary differential equation

)()()(
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44
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TTATTP

TmC
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dt

−−
=
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(11)

that can be integrated to obtain

t t
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This equation can be easily solved either numerically by means of a Romberg integration

[13] or analytically, with the initial condition that at time tin the temperature is Tin.

The analytical solution of Eq. (12) can be computed by dividing the subintegral function

into rational fractions.  The advantage of the analytical solution of the integral is that the

computation is very fast with high numerical precision (better than 10-8 K).  The method

is especially suitable for the simulation of the cooling phase on account of zero input

power (P = 0) where the initial condition is the highest temperature reached in the

heating period.

3.2 Long thick rod approximation

Eq. (5) together with the surface condition Eq. (6) is a nonlinear parabolic heat

equation.  These equations with an initial condition can be solved numerically by means

of an explicit finite difference method.  This approach uses a forward finite difference for

the time derivative and a central finite difference for the diffusive term.  Let ∆t and ∆x
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denote discrete steps in time and space, respectively.  The temperature n
jT = T(j∆x, n∆t)

is now evaluated only in this mesh, that consists of equidistant points.  The advantage of

the explicit method is that the temperature at time j+1 is computed according to the

properties and temperatures at time j
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where α = ∆t/δCp∆x2, λj+1/2 or λj-1/2 is the average thermal conductivity between the mesh

points  j+1, j and  j, j-1, defined as

( ) ( )[ ]n
j

n
jj TT λλλ += ++ 12/1 5.0      ( ) ( )[ ]λ λ λj j

n
j
nT T− −= +1 2 10 5/ . (15)

The numerical system (14) is stable if all terms on the right hand-side are non-negative.

It can be easily proven that if discretization parameters satisfy the following inequality

∆
∆

t
x C
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pj j

j

≤

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1 22
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then the computation is stable.  A similar inequality can be written also for the cylindrical

coordinate system.  The boundary condition (Eq. 6) is used to compute the temperature

on the surface while for the remaining points Eq. (14) is applied.  The precision of

computed temperature profiles using a mesh of 200 points is better then 10-4 K.
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4. CONCLUSIONS

The application of the long thin rod approximention to pulse-heating experiments has

been reconsidered and an analytical solution that takes into account the temperature

dependence of the thermophysical properties has been presented.  Extensive software

programs have been developed for the numerical simulation of pulse-heating experiments

of subsecond duration.  The mathematical models are based both on a long thin rod and

also on a long thick rod (or a long thick slab).  This second and more general model

considers the temperature gradients in the specimen crossection.  The work is continuing

with the application of the developed software to evaluate potential problems in pulse-

heating experiments when using specimens with large crossections.  The influence of the

direct measurement of the radiance temperature on the specimen surface with the

simultaneous determination of the normal spectral emissivity via laser polarimetry or

integrating sphere reflectometry on the accuracy of thermophysical properties will be

investigated, using realistic experimental conditions.
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